Prove that f(a)+f(b)=f(a+b/1+ab) when f(x)=log(1-x/1+x)
Answers
Answered by
3
f(x)=log[1+x/1−x]
so, f(y)=log[1+y/1−y]
Consider,
LHS=f(x)+f(y)=log[1+x1−x]+log[1+y1−y]=log(1+x)−log(1−x)+log(1+y)−log(1−y)
[log(mn)=logm−logn]
=log(1+x)+log⎛⎝1+y⎞⎠−[log(1−x)+log(1−y)]
=log[(1+x)(1+y)]−log[(1−x)(1−y)]
=log(1+x+y+xy)−log(1−y−x+xy)=
log(1+x+y+xy1−y−x+xy)
RHS
= f(x+y1+xy)
=log⎡⎣1+x+y1+xy1−x+y1+xy⎤⎦
=log⎡⎣1+xy+x+y1+xy1+xy−x−y1+xy⎤⎦
=log[1+xy+x+y1+xy−x−y]
So, LHS=RHSHence proved
so, f(y)=log[1+y/1−y]
Consider,
LHS=f(x)+f(y)=log[1+x1−x]+log[1+y1−y]=log(1+x)−log(1−x)+log(1+y)−log(1−y)
[log(mn)=logm−logn]
=log(1+x)+log⎛⎝1+y⎞⎠−[log(1−x)+log(1−y)]
=log[(1+x)(1+y)]−log[(1−x)(1−y)]
=log(1+x+y+xy)−log(1−y−x+xy)=
log(1+x+y+xy1−y−x+xy)
RHS
= f(x+y1+xy)
=log⎡⎣1+x+y1+xy1−x+y1+xy⎤⎦
=log⎡⎣1+xy+x+y1+xy1+xy−x−y1+xy⎤⎦
=log[1+xy+x+y1+xy−x−y]
So, LHS=RHSHence proved
Similar questions
Science,
8 months ago
India Languages,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago