Math, asked by nitya8447, 1 year ago

Prove that f(x) = tan-1(sin x+ cos x) is an increasing function in (-π/2,π/4)

Answers

Answered by Sharad001
49

Question :-

 \small \: prove \: that \: f(x) =  { \tan}^{ - 1} ( sin \: x+  cos \: x ) \:  \\ is \: an \: increasing \: function \: in \:  \\  \bigg( \frac{ -  \pi}{2} \:  \frac{ \pi}{4} \bigg)

Solution :-

We have,

f(x) =  { \tan}^{ - 1}  \big( \: sin \: x \:  + cos \: x \big) \\

Therefore,

 \:  \small {f}^{'} (x) =  \frac{1}{1 +  {(sin \: x \:  + cos \: x)}^{2} } (cos \: x \:  - sin \: x) \\  \\  \small \:  {f}^{'} (x) =  \frac{cos \: x - sin \: x}{2 + sin \: 2x}  \\  \\

if f'(x) > 0 then f(x) is increasing function,

for ,

 \small \implies \:   \frac{ -  \pi}{2}  < x <  \frac{ \pi}{4} ,cos x > sin x  \\  \\

Hence,

 \bf{f \: (x) \: if \: increasing \: in \: ( \frac{ -  \pi}{2} , \frac{ \pi}{4} ) }\\

Similar questions
Math, 6 months ago