Math, asked by gajag239, 8 months ago

prove that f(z)=z² is an analytic function​

Answers

Answered by SrijanShrivastava
1

 f(z) =  {z}^{2}

z   := x + yi

f(z) =  {x}^{2}  -  {y}^{2}  + 2xyi  := u + vi

 \begin{cases}u =  {x}^{2} -  {y}^{2}   \\ v = 2xy\end{cases}

Now, With the help of Cauchy Reimann system of Equations.

 \begin{cases} \frac{ \partial u}{ \partial x}  =  \frac{ \partial v}{ \partial y}  \\  \frac{ \partial u}{ \partial y}   +  \frac{ \partial v}{ \partial x}  = 0 \end{cases}

  \begin{cases}\frac{ \partial u}{ \partial x}  = 2x \\   \frac{ \partial v}{ \partial y} = 2x \end{cases} \:  \:  \:  \:   \implies \frac{ \partial u}{ \partial x}  =  \frac{ \partial v}{ \partial y}

 \begin{cases}   \frac{ \partial u}{ \partial y} =  - 2y \\ \frac{ \partial v}{ \partial x} = 2y  \end{cases}  \:  \:  \:  \: \implies  \frac{ \partial u}{ \partial y}  + \frac{ \partial v}{ \partial x}= 0

Therefore, the Function f(z)=z² is analytic all over the complex plane.

Similar questions