prove that:
fast and quick
Answers
To prove ---> I think there is a mistake in question
1 - Sin θ
-------------- = tan² (π /4 - θ /2 )
1 + Sinθ
Proof --->
We have some formula
Sinθ = Cos (π /2 - θ )
Cos2A = 2 Cos² A - 1
Cos2A = 1 - 2 Sin² A
Applying these formulee
Now
1 - Sinθ = 1 - Cos ( π /2 - θ )
= 1 - { 1 - 2 Sin² ( π /4 - θ / 2 )}
= 1 - 1 + 2 Sin² ( π /4 - θ /2 )
= 2 Sin² (π /4 - θ/2)
1 + Sinθ = 1 + Cos ( π / 2 - θ )
= 1 + 2 Cos² ( π /4 - θ / 2 ) - 1
= 2 Cos² ( π /4 - θ / 2 )
1 - Sinθ
LHS = ----------------
1 + Sinθ
2 Sin²(π /4 - θ /2)
= --------------------------------
2 Cos²( π /4 - θ /2 )
Sin² (π /4 - θ / 2 )
= ---------------------------------
Cos² ( π / 4 - θ / 2 )
= tan² ( π / 4 - θ / 2 ) = RHS