Math, asked by ROHAN2810, 11 months ago

Prove that following numbers are not rational : 5√3

Answers

Answered by Anonymous
9

AnswEr :

\normalsize\sf\ Let \: 5\sqrt{3} \; be \: a \: rational \: number \\ \\ \sf\ As; \: we \: know \: Rational \: number \: is \: in \: form \: of \: \frac{a}{b} \\ \\ \\ \normalsize\ : \implies\sf\ 5\sqrt{3}  = \frac{a}{b} \\ \footnotesize\quad\sf\ [\because\ a \: and \: b \: are \: co-prime \: and \: b \: \neq\ \: 0]

 \rule{120}2

\underline{\bigstar\:\textsf{According \: to \: the \: question \: now:}} \\ \\ \\ \normalsize\ : \implies\sf\ 5\sqrt{2}  = \frac{a}{b}  \\ \\ \\ \normalsize\ : \implies\sf\  \sqrt{2} = \dfrac{a}{5b} \\ \\ \\ \normalsize\ : \implies\sf\ \sqrt{2} =  Irrational \: \& \: \dfrac{a}{5b} = Rational \\ \\ \\ \normalsize\ : \implies\sf\ Rational  \neq Irrational

\normalsize\sf\ This \: contradicts \: the \: fact \: that \: \sqrt{2} \: is \: rational\\\\ \normalsize\sf\ Hence, \: Our \: assumption \: is \: wrong \:, 5\sqrt{3}\\ \normalsize\sf\  \: is \: irrational\\\\\qquad\begin{aligned}\bf{\dag}\:\:\sf Hence, Verified!! \:\:\quad\end{aligned}

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
1

\huge\sf\blue{Given}

➝ 5√3

\rule{110}1

\huge\sf\gray{To\;Prove}

✭ 5√3 is a irrational number

\rule{110}1

\huge\sf\purple{Steps}

\normalsize\sf\ Let \: 5\sqrt{3} \; be \: a \: rational \: number \\ \sf\ We \: know \: Rational \: number \: is \: in \: form \: of \: \frac{a}{b} \\ \\ \normalsize\  \leadsto\sf\ 5\sqrt{3} = \frac{a}{b}

Where a and b are co primes and b not equal to 0

 \normalsize\  \dashrightarrow{\sf{\orange{5\sqrt{3} = \frac{a}{b}}}} \\ \\ \normalsize\ \dashrightarrow\sf\ \sqrt{3} = \dfrac{a}{5b} \\ \\  \normalsize\  \dashrightarrow\sf\ \sqrt{3} = Irrational \: \& \: \dfrac{a}{5b} = Rational \\ \\  \normalsize\  \dashrightarrow\sf\ Rational ≠ Irrational

\normalsize\sf\ But\: it \: contradicts \: the \: fact \: that \: 5\sqrt{3} \: is \: rational\\ \normalsize\sf\ Hence, \: Our \: assumption \: is \: wrong \:, 5\sqrt{3}\\ \normalsize\sf\ \: is \: irrational

Hence Verified

\rule{170}3

Similar questions