Math, asked by GRANDxSAMARTH, 9 months ago

Prove that following
 \sin {40}^{o}  -  \cos {70}^{o}  =  \sqrt{3}  \cos {80}^{o}

Answers

Answered by Anonymous
8

Prove that following

 \sin {40}^{o} - \cos {70}^{o} = \sqrt{3} \cos {80}^{o}

\rule{150}2

sOLUTIOn

L.H.S=

\leadsto sin40°-cos70° \\ \leadsto sin40°-cos(90°-70°)

Using identity

\red{\fbox{sinA-sinB=\frac{2cos(A+B)}{2}×\frac{2sin(A-B)}{2} }}

Hence,

\leadsto sin40°-sin20°=2cos30°×sin10°\\ \leadsto 2×\frac{\sqrt3}{2}×cos80°\\ \leadsto \sqrt3\: cos\:80°\:R.H.S

Proved

Similar questions