Math, asked by spyXsenorita, 1 month ago

Prove that For all n belongs to The set of Real numbers except " - 1 " :-

 \quad \qquad { \bigstar { \underline { \boxed { \displaystyle { \sf { \int {x}^{n} dx = \dfrac{{x}^{n + 1 }}{n + 1 } + C } } } } } { \bigstar } }

Answers

Answered by Anonymous
3

 \large \dag Question :-

Prove that For all n belongs to The set of Real numbers except " - 1 " :-

 \rm \int {x}^{n} dx = \dfrac{{x}^{n + 1 }}{n + 1 } + C  \\

 \large \dag Proof :-

We Know that,

 \rm  \frac{d}{dx} \bigg( \frac{x {}^{n + 1} }{n + 1}  \bigg) \\

 = \rm   \bigg(\frac{1}{n + 1} \bigg) .\frac{d}{dx} \bigg(  {x}^{n + 1} \bigg) \\

 = \rm   \bigg(\frac{1}{ \cancel{n + 1}} \bigg).\big(  \cancel{n + 1} \big). {x}^{n}  \\

 =   \large \bf \green{{x}^{n} }

Therefore, definition of anti derivative or integral we can say that :

 \blue  \bigstar \:  \: \red{\bf\int {x}^{n} dx = \dfrac{{x}^{n + 1 }}{n + 1 } + C,x\ne1}\\

\red \dashrightarrow\large\underline{\pink{\underline{\frak{\pmb{\text Hence\:\:Proved }}}}} {}^{   \orange\bigstar  \purple\bigstar}

 \large \dag Additional Information :-

 \blue{ \bigstar \:   \underline{ \pmb{ \mathfrak{ Commonl \text y \: \: Used \: \: \text Integrals : } }}}

\maltese \: \: \: \displaystyle \rm\int \dfrac{1}{x} \: dx =log |x| +C \\

  \maltese \: \: \: \displaystyle \rm\int {a}^{x} \: dx = \frac{ {a}^{x} }{log \: a} + C \\

\maltese \: \: \: \displaystyle \rm\int sinx \: dx = - cosx + C   \\

 \maltese \: \: \: \displaystyle \rm\int cosx \: dx =sinx + C \\

\maltese \: \: \: \displaystyle \rm\int sec {}^{2} x \: dx =tanx+ C \\

 \maltese \: \: \: \displaystyle \rm\int {cosec}^{2} x \: dx = - cotx + C \\

 \maltese \: \: \: \displaystyle \rm\int secx.tanx \: dx =secx + C \\

\maltese \: \: \: \displaystyle \rm\int cosecx.cotx \:dx = - cosecx + C

Answered by shivasinghmohan629
1

Answer:

Step-by-step explanation:

Hope it helps you please mark me brainlist please

Attachments:
Similar questions