Prove that for any positive integer number n , n 3 + 2 n is divisible by 3
komali000:
haa
Answers
Answered by
2
Statement P (n) is defined by
n 3 + 2 n is divisible by 3
STEP 1: We first show that p (1) is true. Let n = 1 and calculate n 3 + 2n
1 3 + 2(1) = 3
3 is divisible by 3
hence p (1) is true.
STEP 2: We now assume that p (k) is true
k 3 + 2 k is divisible by 3
is equivalent to
k 3 + 2 k = 3 M , where M is a positive integer.
We now consider the algebraic expression (k + 1) 3 + 2 (k + 1); expand it and group like terms
(k + 1) 3 + 2 (k + 1) = k 3 + 3 k 2 + 5 k + 3
= [ k 3 + 2 k] + [3 k 2 + 3 k + 3]
= 3 M + 3 [ k 2 + k + 1 ] = 3 [ M + k 2 + k + 1 ]
Hence (k + 1) 3 + 2 (k + 1) is also divisible by 3 and therefore statement P(k + 1) is true.
Answered by
1
Answer:
i don't know dear .. sry for that
Step-by-step explanation:
Similar questions