Math, asked by babinarzary, 5 months ago

Prove that for each positive integer n, the integer 32n+1 + 2n+2 is divisible by 7.​

Answers

Answered by Cosmique
29

To prove:

For every positive integer n, the integer \sf{3^{(2n+1)} + 2^{(n+2)}} will be divisible by 7

Proof:

Considering the method of mathematical induction

Let us check for n = 1

\sf{3^{(2(1)+1)} + 2^{((1)+2)}} = \sf{3^3 + 2^3} = 35  (divisible by 7)

Checking for n = 2

\sf{3^{(2(2)+1)} + 2^{((2)+2)}} = \sf{3^5 + 2^4} = 243 + 16 = 259   (divisible by 7)

Now, let us assume that

\sf{3^{(2x+1)} + 2^{(x+2)}} is divisible by 7 for some positive integer 'x' such that,

\sf{3^{(2x+1)} + 2^{(x+2)}=7k}  for any integer k.

that is, \sf{ 2^{(x+2)} = 7k - 3^{(2x+1)} \;\;...eqn(1)}

Now, We need to show that integer will be divisible by 7 for n = x + 1 also, i.e., \sf{3^{(2(x+1)+1)} + 2^{((x+1)+2)}} is also divisible by 7

so,

\implies \sf{3^{(2(x+1)+1)} + 2^{((x+1)+2)}}

\qquad \qquad =  \sf{3^{(2x+3)} + 2^{(x+3)}}

\qquad \qquad =  \sf{3^{2} \;.\; 3^{(2x+1)} + 2^{(x+2)} \;.\; 2}

\qquad \qquad =  \sf{3^{2} \;.\; 3^{(2x+1)} + 2^{(x+2)} \;.\; 2}

using equation (1)

\qquad \qquad =  \sf{3^{2} \;.\; 3^{(2x+1)} + (7k - 3^{(2x+1)} )\;.\; 2}

\qquad \qquad =  \sf{9 \;.\; 3^{(2x+1)} + 14k - 2 (3^{(2x+1)}) }

\qquad \qquad =  \sf{  (9-2) \;.\; 3^{(2x+1)}+ 14k }

\qquad \qquad =  \sf{  7 \;.\; 3^{(2x+1)}+ 14k }

\qquad \qquad =  \sf{  7\; ( 3^{(2x+1)}+ 2k) }

That is the multiple of 7.

Therefore, By the concept of mathematical induction, \sf{3^{(2n+1)} + 2^{(n+2)}} is divisible by 7 for all positive integer n.


MysterySoul: Beneficent answer!
Similar questions