Prove that:
\frac{cot A -cosA}{cot A + cos A} =\frac{cosecA-1}{cosecA+1}
Answers
Answered by
2
[tex]\frac{cot A -cosA}{cot A + cos A} =\frac{cosecA-1}{cosecA+1} \\
L.H.S.=\ \textgreater \ \\ \frac{cot A -cosA}{cot A + cos A} \\
= \frac{ \frac{cosA}{sinA} -cosA}{ \frac{cosA} {sinA} + cos A} \\
= \frac{ \frac{cosA-cosA.sinA}{sinA} }{ \frac{cosA+cosA.sinA}{sinA}} \\
= \frac{ cosA(1-sinA) }{cosA(1+sinA)} = \frac{1-sinA}{1+sinA} \\ Dividing \: both \: numerator \ and \ denominator \ by \ sinA, \\ = \frac{ \frac{1-sinA}{sinA}}{ \frac{1+sinA}{sinA} } = \frac{ \frac{1}{sinA} -1 }{ \frac{1}{sinA} +1} [/tex]
Hence, proved.
Hence, proved.
Answered by
0
It seems difficult but Om Gupta solved it in an easy way.
Similar questions
Math,
8 months ago