Math, asked by ookitkatoo, 17 days ago

prove that



\frac{ \sin \: a \tan \: a }{1 - \cos \: a} = 1 + \sec \: a
1−cosa
sinatana

=1+seca

no spam ❌❌❌​​

Answers

Answered by BrainlyGovind
5

Answer:

\frac{ \sin \: a \:  \tan \: a  }{1 -   \cos \: a }  =  \frac{  { \sin \: a }^{2}  }{ \cos \: a \: (1 -  \cos \: a) }  \\  =  \frac{1 -  { \cos}^{2}  \: a}{ \cos \: a \: ( 1 -  \cos \: a) }  \\  =  \frac{1 +  \cos \: a }{ \cos \: a }  \\  =  \frac{ \sin \: a \:  \tan \: a }{1 -  \cos \: a}  = 1 +  \sec \: a \:

hence proved

hope it helps you ✅✅✅

Answered by Anonymous
1

Answer:

hence your question will be proved

Attachments:
Similar questions