Math, asked by kavyashreeglgl143, 9 months ago

) Prove that geometrically cos(x + y) = cos x cos y - sin x sin y and hence find the
value of cos[π÷2 + x]​

Answers

Answered by Anonymous
37

Answer:

{ \huge \orange{ \underline{answer = -   \sin(x) }}}

 \mathfrak{ \large \red{ \underline{question}}} \\  \implies { \large{find \: the \: value \: of \:  \cos( \frac{\pi}{2 }  + x) }} \\ \mathfrak{ \large \green{ \underline{formula}}} \\  \implies{ \large{ \cos(x + y) =  \cos(x)   \cos(y)  -  \sin(x) \sin(y)  }} \\  \\  \mathfrak{ \large \blue{ \underline{solution}}} \\ \implies{ \large{ \cos( \frac{\pi}{2} ) \cos(x)  -  \sin( \frac{\pi}{2} )  \sin(x)  }} \\ \implies{ \large{o \times  \cos(x) - 1 \times  \sin(x)  }} \\ \implies{ \large{0 -  \sin(x) }} \\ \implies{ \large{ -  \sin(x) }} \\ { \large \orange{ \underline{answer = -   \sin(x) }}}

Answered by Anonymous
29

\huge\mathbb{\underline{\underline{Question}}}

\tt{Find\:the\:the\:value\:of}

 \cos( \frac{\pi}{2}  + x)  \\

\huge\mathbb{\underline{\underline{Formula\:used}}}

 \cos(x + y)  =  \cos(x)  \cos(y)  -  \sin(x )  \sin(y)

\huge\mathbb{\underline{\underline{Solution}}}

 \cos( \frac{\pi}{2} )  \cos(x )  -  \sin( \frac{\pi}{2} )  \sin(x)  \\ →0 \times  \cos(x)  - 1 \times  \sin(x)  \\ →0 -  \sin(x)  \\ → -  \sin(x)

\tt{Answer\:is}\fbox{-sin(x)}

Similar questions