Prove that ---> sin 25°+cos 5° = √3 sin55°
Answers
L.H.S = cos5 – sin 25
= sin 95 – sin 25 [ sin(90+5) = cos5 ]
= 2 * cos (95+25)/2 * sin (95-25)/2
= 2 * cos60 * sin35
=2 * ½ * sin35 (cos60 = ½ )
= sin35
= R.H.S
hence L.H.S = R.H.S
Step-by-step explanation:
sin 25°+cos 5° =sin 25°+sin85° = sin85+sin 25°
☆ cos 5° = cos( 90°- 85°)
☆ cos (1×90°-85°)
☆ odd multipul of 90 so cos
change into sin
☆ angle lies in 1st quadrant so
positive sign
sin85°+sin 25°
☆ sinP + sinQ = 2sin (P+Q)/2 cos (P-Q)/2
sin85°+sin 25°= 2sin (85°+25°)/2 cos( 85°-25° )/2
= 2sin 110°/2 cos 60°/2
= 2sin 55° cos 30°
= 2sin 55° √3 /2 ☆ cos 30° = √3 /2
= sin 55° √3
√3 sin 55° = √3 sin 55°
L.H.S = R.H.S