Prove that =>
tan4x = {4 tanx(1 - tan² x)}/{1 - 6tan²x + tan^4x}
Answers
Answered by
7
Step-by-step explanation:
We know that,
LHS = tan4x
= tan(2x + 2x)
=>>tan(A + B) = (tanA+tanB)/(1-tanA.tanB)-- {Formula}
= (tan2x + tan2x)/(1-tan2x.tan2x)
=2tan2x/(1-tan²2x)
Again,
=>>tan2A = 2tanA/(1-tan²A)-- {Formula}
= 2{2tanx/(1-tan²x)}/[1-{2tanx/(1-tan²x)}²]
=4tanx.(1-tan²x)²/(1-tan²x)(1+tan⁴x-2tan²x-4tan²x)
=4tanx.(1-tan²x)/(1-6tan²x+tan⁴x)
= RHS
Hope it will help you with
✌️sai
nkopl:
thank you
Answered by
32
Prove that
Solution-
°•° tan4x = tan2.(2x)
Let 2x = A
= tan2A
Now we put A = 2x
Similar questions
Math,
6 months ago
Business Studies,
6 months ago
Social Sciences,
1 year ago
English,
1 year ago
English,
1 year ago