Prove that height is h(1+tanalpha.tanbeta)
Answers
Answered by
0
Solution
To prove:h=h(1+tanα.tanβ)/2
Proof: if α and β are angles in a trigonomentric(right angled triangle) then,
α+β+90°=180°
α+β=180°-90°
α+β=90
hence, β=90-α
As we know, tanθ=sinθ/cosθ
RHS=h(1+tanα.tanβ)/2
=h(1+sinα/cosα x sinβ/cosβ)/2
=h(1+sinαsinβ/cosαcosβ)/2
=h(cosαcosβ+sinαsinβ/cosαcosβ)/2
=h(cosαcos(90°-α)+sinαsin(90°-α)/2cosαcos(90°-α))
As, sinθ=cos(90-°θ)
=h(cosαsinα+sinαcosα/2cosαsinα)
=h(2sinαcosα/2sinαcosα)
=h(1)
=h.
Hence proved
Hope it helps
To prove:h=h(1+tanα.tanβ)/2
Proof: if α and β are angles in a trigonomentric(right angled triangle) then,
α+β+90°=180°
α+β=180°-90°
α+β=90
hence, β=90-α
As we know, tanθ=sinθ/cosθ
RHS=h(1+tanα.tanβ)/2
=h(1+sinα/cosα x sinβ/cosβ)/2
=h(1+sinαsinβ/cosαcosβ)/2
=h(cosαcosβ+sinαsinβ/cosαcosβ)/2
=h(cosαcos(90°-α)+sinαsin(90°-α)/2cosαcos(90°-α))
As, sinθ=cos(90-°θ)
=h(cosαsinα+sinαcosα/2cosαsinα)
=h(2sinαcosα/2sinαcosα)
=h(1)
=h.
Hence proved
Hope it helps
sivaprasath:
Mark as brainliest
Similar questions
English,
7 months ago
Math,
7 months ago
Biology,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago