Math, asked by snehashrivastava86, 4 hours ago

Prove that :( help me​

Attachments:

Answers

Answered by Anonymous
1

 {\boxed{ \boxed{ \bold \red{Please \:  mark \:  as \:  brainliest}}}}

Attachments:
Answered by mathdude500
8

Prove that

\rm \bigg( {\bigg(8 \bigg) }^{ - \dfrac{2}{3} } \times  {\bigg(2\bigg) }^{\dfrac{1}{2} }  \times {\bigg(25 \bigg) }^{ - \dfrac{5}{4} } \bigg) \div \bigg({\bigg(32\bigg) }^{ - \dfrac{2}{5} } \times {\bigg(125 \bigg) }^{ - \dfrac{5}{6} }\bigg)  =  \sqrt{2}

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\bigg( {\bigg(8 \bigg) }^{ - \dfrac{2}{3} } \times  {\bigg(2\bigg) }^{\dfrac{1}{2} }  \times {\bigg(25 \bigg) }^{ - \dfrac{5}{4} } \bigg) \div \bigg({\bigg(32\bigg) }^{ - \dfrac{2}{5} } \times {\bigg(125 \bigg) }^{ - \dfrac{5}{6} }\bigg)

Let we first simply each term in its simplest form.

Consider,

\rm :\longmapsto\:{\bigg(8\bigg) }^{ - \dfrac{2}{3} }

\rm \:  =  \:  \:\:{\bigg(2 \times 2 \times 2\bigg) }^{ - \dfrac{2}{3} }

\rm \:  =  \:  \:\:{\bigg( {(2)}^{3} \bigg) }^{ - \dfrac{2}{3} }

\rm \:  =  \:  \: {(2)}^{ - 2}

Now, Consider,

\rm :\longmapsto\:{\bigg( 25\bigg) }^{ - \dfrac{5}{4} }

\rm \:  =  \:  \:\:{\bigg( 5 \times 5\bigg) }^{ - \dfrac{5}{4} }

\rm \:  =  \:  \:\:{\bigg( \sqrt{5}\times  \sqrt{5} \times  \sqrt{5} \times  \sqrt{5}  \bigg) }^{ - \dfrac{5}{4} }

\rm \:  =  \:  \:\:{\bigg(  {( \sqrt{5}) }^{4}   \bigg) }^{ - \dfrac{5}{4} }

\rm \:  =  \:  \: {( \sqrt{5} )}^{ - 5}

Now, Consider,

\rm :\longmapsto\:{\bigg(32\bigg) }^{ - \dfrac{2}{5} }

\rm \:  =  \:  \:\:{\bigg(2 \times 2 \times 2 \times 2 \times 2\bigg) }^{ - \dfrac{2}{5} }

\rm \:  =  \:  \:\:{\bigg( {(2)}^{5} \bigg) }^{ - \dfrac{2}{5} }

\rm \:  =  \:  \: {(2)}^{ - 2}

Now Consider,

\rm :\longmapsto\:{\bigg(125\bigg) }^{ - \dfrac{5}{6} }

\rm \:  =  \:  \:\:{\bigg( 5 \times 5 \times 5  \bigg) }^{ - \dfrac{5}{6} }

\rm \:  =  \:  \:\:{\bigg( \sqrt{5}\times  \sqrt{5} \times  \sqrt{5} \times  \sqrt{5}  \times  \sqrt{5}  \times  \sqrt{5}  \bigg) }^{ - \dfrac{5}{6} }

\rm \:  =  \:  \:\:{\bigg(  {( \sqrt{5}) }^{6}   \bigg) }^{ - \dfrac{5}{6} }

\rm \:  =  \:  \: {( \sqrt{5} )}^{ - 5}

Consider given expression,.

\rm :\longmapsto\:\bigg( {\bigg(8 \bigg) }^{ - \dfrac{2}{3} } \times  {\bigg(2\bigg) }^{\dfrac{1}{2} }  \times {\bigg(25 \bigg) }^{ - \dfrac{5}{4} } \bigg) \div \bigg({\bigg(32\bigg) }^{ - \dfrac{2}{5} } \times {\bigg(125 \bigg) }^{ - \dfrac{5}{6} }\bigg)

So, Now given expression can be rewritten as

\rm \:  =  \:  \:\dfrac{{\bigg(8 \bigg) }^{ - \dfrac{2}{3} } \times  {\bigg(2\bigg) }^{\dfrac{1}{2} }  \times {\bigg(25 \bigg) }^{ - \dfrac{5}{4} }}{{\bigg(32\bigg) }^{ - \dfrac{2}{5} } \times {\bigg(125 \bigg) }^{ - \dfrac{5}{6} }}

Now, on substituting the values, evaluated above, we get

\rm \:  =  \:  \:\dfrac{{\bigg(2 \bigg) }^{ - 2} \times  {\bigg(2\bigg) }^{\dfrac{1}{2} }  \times {\bigg( \sqrt{5}  \bigg) }^{ - 5 }}{{\bigg(2\bigg) }^{ - 2 } \times {\bigg( \sqrt{5}  \bigg) }^{ - 5}}

\rm \:  =  \:  \:{\bigg(2\bigg) }^{\dfrac{1}{2} }

\rm \:  =  \:  \: \sqrt{2}

\boxed{\boxed{\bf{Hence, Proved}}}

Additional Information :-

\boxed{ \bf{ \: {x}^{m} \times  {x}^{n}  \: =   \:  {x}^{m + n}}}

\boxed{ \bf{ \: {x}^{m}  \div   {x}^{n}  \: =   \:  {x}^{m  -  n}}}

\boxed{ \bf{ \: ({x}^{m})^{n}  \: =   \:  {x}^{mn}}}

\boxed{ \bf{ \: {x}^{0}\: =   \:  1}}

Similar questions