Math, asked by pragyasingh36, 11 months ago

Prove that :

i). 1 + cos A/sin A = sin A/1-cos A​

Answers

Answered by Anonymous
5

\huge\red{\boxed{\bold{Solution}}}

 \huge\frac{1+cos A}{sin A} =  \huge\frac{sin A}{1 - cos A}

_________________________

=  \huge\frac{1+cos A}{sin A}

.

=  \huge\frac{(1 + cos A) (1 - cos A)}{sin A (1 - cos A)}

.

=  \huge\frac{1+cos^2 A}{sin A (1 - cos A)}

.

=  \huge\frac{sin^2 A}{sin A (1 - cos A)}

.

=  \huge\frac{sin A}{1 - cos A}

hence, LHS = RHS

\huge{\boxed{\bold{Hence\:proved}}}

\huge\mathbb\blue{THANK\:YUH!}

Answered by RvChaudharY50
22

 \frac{(1+cosA)}{sinA} \\  </p><p> \\ multiply \: by \: sina \: in \: numerator \: and \: denominator \\ we \: get \\  \\  \frac{(1+cosa)sina}{sin^{2} a}  \\  \\  \\ now \: we \: know \: that \\ sin^{2}a = (1 - cos^{2}a) \\ and \\ ( {a}^{2}  -  {b}^{2} ) = (a + b)(a - b) \\  \\ so \: we \: get \\  \frac{(1 + cosa)sina}{(1 + cosa)(1 - cosa)}  \\  \\  =   \frac{sina}{(1 - cosa)}  \\  \\ proved

\huge\blue{THANKS}

Similar questions