Math, asked by Nitin7812, 11 months ago

Prove that:
(i) √3 x5⁻³ ÷ 3√3⁻¹√5x6√3 x5⁶= 3/5
(ii) 9³/² -3× 5⁰ -(1/81)⁻¹/²= 15
(iii) (1/4 )⁻² -3×8²/³ ×4⁰+(9/16)⁻¹/²=16/3
(iv) 2¹/²x3¹/³x4¹/⁴ /10⁻¹/⁵x5³/⁵ ÷3⁴/³x5⁻⁷/⁵ / 4⁻³/⁵x6 = 10
(v) √1/4+ (0.01)⁻¹/² – (27)²/³ = 3/2
(vi) 2 ⁿ⁻¹/2ⁿ⁻¹ - 2ⁿ= 3/2
(vii) (64/125)⁻²/³ + 1/(256/625)¹/⁴ + (√25/3√64) = 65/16
(viii) 3⁻³x6²x√98 / 5²x3√1/25x(15)⁻⁴/³ x3¹/³ = 28√2
(ix) (0.6)⁰ - (0.1)⁻¹ / (3/8)⁻¹ (3/2)³ + (-1/3)⁻¹ = - 3/2

Answers

Answered by nikitasingh79
6

By using these law of exponents : [a⁻¹ = 1/a] ,  [a^-p = 1/ a^p],  (a^p )^q = a^pq , a⁰ = 1, (a × b)ⁿ = aⁿ × bⁿ

 

(i) √3 x 5⁻³ ÷ ³√3⁻¹√5 x ⁶√3 x 5⁶ = ⅗

L.H.S : √3 x 5⁻³ ÷ ³√3⁻¹√5 x ⁶√3 x 5⁶

= ((3 x 5⁻³)¹/² ÷ (3⁻¹)¹/³(5)¹/²) x (3 x 5⁶)¹/⁶

= ((3)¹/² x (5⁻³)¹/² ÷ (3⁻¹)¹/³(5)¹/² ) x (3¹/⁶ x 5⁶ ×¹/⁶)

= (3)¹/² x (5)⁻³/² ÷ (3⁻¹/³)(5)¹/² ) x ((3)¹/⁶ x 5⁶/⁶)

= (3)¹/² - (-¹/³) x (5)⁻³/² - ¹/²)  x ((3)¹/⁶ x 5¹)

= (3)(³+²)/⁶  x (5)(⁻³ - ¹)/²  x ((3)¹/⁶ x 5¹)

= (3)⁵/⁶  x (5)⁻⁴/²  x ((3)¹/⁶ x 5¹)

= (3)⁵/⁶  x (5)⁻²   x ((3)¹/⁶ x 5¹)

= (3)⁵/⁶+¹/⁶  x (5)⁻²+¹  

= 3⁶/⁶ × 5⁻¹

= 3¹ × ⅕

= ⅗

= R.H.S  

(ix) (0.6)⁰ - (0.1)⁻¹ / (3/8)⁻¹ (3/2)³ -  (-1/3)⁻¹ = - 3/2

LH.S -  (0.6)⁰ - (0.1)⁻¹ / (3/8)⁻¹ (3/2)³ - (1/3)⁻¹

= (1 - 1/0.1 ) /( 8/3× 3³/2³  - 3/1)

= (1 - 1/0.1 ) /( 8/3 × 27/8  - 3/1)

= ( 1 - 10) / (9 - 3)

= - 9/6

= - 3/2  

= RHS  

Some solutions are in the attachment below.

HOPE THIS ANSWER WILL HELP YOU…..

 

Similar questions :

Simplify:

(i) (16⁻¹/⁵)⁵/² (ii) 3√(343)⁻² (iii) (0.001)¹/³ (iv) (25)³/² x(243)³/⁵ / (16)⁵/⁴ x (8)⁴/³

(v) (√2/5)⁸ ÷(√2/5)¹³ (vi) (5⁻¹x7²/5²x7⁻⁴)⁷/² x(5⁻²x7³/5³x7⁻5)⁻⁵/²

https://brainly.in/question/15896952

Assuming that x, y, z are positive real numbers, simplify each of the following:

(i)(√x⁻³)³ (ii) √x³y⁻² (iii) x⁻²/³ y⁻¹/²)² (iv) (√x)⁻²/³ √y⁴÷√xy⁻¹/² (v) s√243X¹⁰Y⁵Z¹⁰ (VI) ( X⁻⁴/Y⁻¹⁰)⁵/⁴

https://brainly.in/question/15896951

Attachments:
Similar questions