Prove that: i / cosecA - cotA -1 / sinA = 1 / sinA - 1 / cosecA + cotA
Answers
Answered by
7
LHS
=1/cosecA-cotA-1/sinA
=1/(1/sinA-cosA/sinA)-1/sinA
=sinA/(1-cosA)-1/sinA
=(sin²A-1+cosA)/sinA(1-cosA)
=(1-cos²A-1+cosA)/sinA(1-cosA) [∵, sin²A+cos²A=1]
=cosA(1-cosA)/sinA(1-cosA)
=cosA/sinA
=cotA
RHS
=1/sinA-1/cosecA+cotA
=1/sinA-1/(1/sinA+cosA/sinA)
=1/sinA-sinA/(1+cosA)
=(1+cosA-sin²A)/sinA(1+cosA)
=(1+cosA-1+cos²A)/sinA(1+cosA) [∵, sin²A+cos²A=1]
=cosA(1+cosA)/sinA(1+cosA)
=cosA/sinA
=cotA
∴, LHS=RHS (Proved)
=1/cosecA-cotA-1/sinA
=1/(1/sinA-cosA/sinA)-1/sinA
=sinA/(1-cosA)-1/sinA
=(sin²A-1+cosA)/sinA(1-cosA)
=(1-cos²A-1+cosA)/sinA(1-cosA) [∵, sin²A+cos²A=1]
=cosA(1-cosA)/sinA(1-cosA)
=cosA/sinA
=cotA
RHS
=1/sinA-1/cosecA+cotA
=1/sinA-1/(1/sinA+cosA/sinA)
=1/sinA-sinA/(1+cosA)
=(1+cosA-sin²A)/sinA(1+cosA)
=(1+cosA-1+cos²A)/sinA(1+cosA) [∵, sin²A+cos²A=1]
=cosA(1+cosA)/sinA(1+cosA)
=cosA/sinA
=cotA
∴, LHS=RHS (Proved)
Similar questions