Prove that: (i) cot A . tan A= sin A; (ii) sin^2 taeta (1+cot^2 taeta)=1; (iii) cos^2 taeta (1+tan^2 taeta) =1;
Answers
Answered by
0
Answer:
Step-by-step explanation:
Let
L.H.S= (1+cotA+tanA)(sinA−cosA)
=(1+
sinA
cosA
+
cosA
sinA
)(sinA−cosA)
=(
sinAcosA
sinAcosA+cos
2
A+sin
2
A
)(sinA−cosA)
=(1+sinAcosA)(
sinAcosA
sinA−cosA
)
Now,
R.H.S=sinAtanA−cotAcosA
=sinA
cosA
sinA
−
sinA
cosA
cosA
=
cosA
sin
2
A
−
sinA
cos
2
A
=
sinAcosA
sin
3
A−cos
3
A
=
sinAcosA
(sinA−cosA)
(sin
2
A+cos
2
A+sinAcosA)
=(1+sinAcosA)
sinAcosA
(sinA−cosA)
Similar questions
India Languages,
24 days ago
Hindi,
1 month ago