Math, asked by udhaystudies, 1 month ago

Prove that: (i) cot A . tan A= sin A; (ii) sin^2 taeta (1+cot^2 taeta)=1; (iii) cos^2 taeta (1+tan^2 taeta) =1;​

Answers

Answered by krishbadgujar
0

Answer:

Step-by-step explanation:

Let

L.H.S= (1+cotA+tanA)(sinA−cosA)

=(1+

sinA

cosA

+

cosA

sinA

)(sinA−cosA)

=(

sinAcosA

sinAcosA+cos

2

A+sin

2

A

)(sinA−cosA)

=(1+sinAcosA)(

sinAcosA

sinA−cosA

)

Now,

R.H.S=sinAtanA−cotAcosA

=sinA

cosA

sinA

sinA

cosA

cosA

=

cosA

sin

2

A

sinA

cos

2

A

=

sinAcosA

sin

3

A−cos

3

A

=

sinAcosA

(sinA−cosA)

(sin

2

A+cos

2

A+sinAcosA)

=(1+sinAcosA)

sinAcosA

(sinA−cosA)

Similar questions