Math, asked by yana85, 1 year ago

prove that :-
I'll mark you as a brainliest

Attachments:

OmShinde76: =(cosA/sinA - cosA)/(cosA/sinA + cosA)
OmShinde76: =cosA(1/sinA - 1)/cosA(1/sinA + 1)
OmShinde76: = (1/sinA -1)/(1/sinA+1)
OmShinde76: =(cosecA-1)/(cosecA+1) since 1/sinA
OmShinde76: = cosecA
yana85: thanx

Answers

Answered by MrThakur14Dec2002
10
Solution.......

Let A = alpha

So,

 \frac{ \cot( \alpha ) - \cos( \alpha ) }{ \cot( \alpha ) + \cos( \alpha ) } = \frac{ \cosec( \alpha ) - 1}{ \cosec( \alpha ) + 1 }

======
☆LHS
======

 \frac{ \cot( \alpha ) - \cos( \alpha ) }{ \cot( \alpha ) + \cos( \alpha ) } \\ \\ = \frac{ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } - \cos( \alpha ) }{ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } + \cos( \alpha ) }

 = \frac{ \cos( \alpha ) - \cos( \alpha ) \sin( \alpha ) }{ \cos( \alpha ) + \cos( \alpha ) \sin( \alpha ) } \\ \\ = \frac{ \cos \alpha (1 - \sin \alpha) }{ \cos \alpha (1 + \sin \alpha) } \\ \\ = \frac{1 - \sin( \alpha ) }{1 + \sin( \alpha ) }

Now,

=======
☆ RHS
=======

 \\ = \frac{ \cosec( \alpha ) - 1}{ \cosec( \alpha ) + 1}
 \\ \\ = \frac{ \frac{1}{ \sin( \alpha ) } - 1}{ \frac{1}{ \sin( \alpha ) } + 1 }

 \\ \\ = \frac{ \frac{1 - \sin( \alpha ) }{ \sin( \alpha ) } }{ \frac{1 + \sin( \alpha ) }{ \sin( \alpha ) } } \\ \\ \\ = \frac{1 - \sin( \alpha ) }{1 + \sin(alpha) }

Therefore, LHS = RHS

HENCE, PROVED .

MrThakur14Dec2002: thanku
muakanshakya: ua welca✌️
TRISHNADEVI: in last line of RHS.. i think u forgot to put Alpha in denomintor..
muakanshakya: yeah!
MrThakur14Dec2002: aree dhyaan se dekha kro ....
MrThakur14Dec2002: tb bola kro ......... xD
TRISHNADEVI: 100% dhyan se dekh kr bola h..
MrThakur14Dec2002: Ooo
MrThakur14Dec2002: to ek baar mera solution dekhiye
TRISHNADEVI: now its ohk. ..
Answered by TRISHNADEVI
33

\underline{\pink{\bold{TO \: \: PROVE}}}

\boxed{ \bold{\frac{cot \: A \: - cos \: A}{cot \: A + \: cos \: A} = \frac{cosec \: A- 1}{cosec \: A + 1} }}

\underline{\pink{\bold{PROOF}}}

 \bold{L.H.S. = \frac{cot \: A - cos \: A}{cot \: A + cos \: A} } \\ \\ = \bold{ \frac{ \frac{cos \: A}{sin \: A} - cos \: A }{ \frac{cos \: A}{sin \: A} + cos \: A } } \\ \\ = \bold{ \frac{ \frac{cos \: A - cos \: A.sin \: A}{sin \: A} }{ \frac{cos \: A + cos \: A.sin \: A}{sin \: A} } } \\ \\ = \bold{ \frac{cos \: A -cos \: A .sin \: A }{cos \: A + cos \: A.sin \: A} } \\ \\ = \bold{ \frac{cos \: A \: (1 - sin \: A)}{cos \: A \: (1 + sin \: A)} } \\ \\ = \bold{ \frac{1 -sin \: A }{1 + sin \: A} } \\ \\ = \bold{ \frac{ \frac{1 - sin \: A}{sin \: S} }{ \frac{1 + sin \: A}{sin \: A} } } \\ \\ = \bold{ \frac{ \frac{1}{sin \: A} - \frac{sin \: a}{sin \: a} }{ \frac{1}{sin \: A} + \frac{sin \: A}{sin \: A} } } \\ \\ = \bold{ \frac{cosec \: A - 1}{cosec \: A + 1} } \\ \\ = \bold{R.H.S.}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{Hence \: \: Proved.}

___________________________________

 \bold{ \red{ \mathfrak{THANKS...}}}
Similar questions