Prove that i) sin 2A = 2 sin A COSA
ii) cos 2A = cos²A-sin^2A
Answers
Answered by
2
Step-by-step explanation:
Example
If A, B, C are angles of a triangle, prove that
sin 2A +sin 2C = 4 sin A sin B sin C
Solution
Since A, B, C are angles of a triangle, we have A +B +C =  = 180°.
L.H.S. = (sin 2A +sin 2B) +sin 2C
= 2 sin [(2A +2B)/2] cos [(2A -2B)/2] + sin 2C
= 2 sin (A +B) cos (A -B) + 2 sin C cos C
= 2 sin ( -C) cos (A -B) + 2 sin C cos ( -(A +B))
= 2 sin C cos (A -B) -2 sin C cos (A +B)
= 2 sin C [cos (A -B) -cos (A +B)]
= 2 sin C (2 sin A sin B) = 4 sin A sin B sin C = R.H.S.
Answered by
0
Step-by-step explanation:
sin(a+a)=sinacosa+cosasina
sin(a+b)=sinacosb+cosasinb
sin2a=2sinacosa
2)cos(a+a)=cosacosa-sina sina
=cos^2a-sin^2a
cos(a+b)=cosacosb-sinasinb
Similar questions