Math, asked by Sudipta34, 9 months ago

Prove that,

(i) sin(A+B)sin(A-B)=cos²B- cos²A

(ii)cos(A+B)cos(A-B)=cos²B - sin²A​

Answers

Answered by Anonymous
15

Solution No.(i)

Taking L.H.S ,

sin(A+B)sin(A-B)

=(sinA cosB+cosA sinB).(sinA cosB - cosA sinB)

= sin²A cos²B - cos²A sin²B

= sin²A(1-sin²B)-(1-sin²A)sin²B

= sin²A-sin²A sin²B - sin²B + sin²A sin²B

= sin²A - sin²B

= (1-cos²A) - (1-cos²B)

=1-cos²A-1 +cos²B

= cos²B - cos²A [ Proved ]

Solution No.(ii)

Taking L.H.S ,

cos(A+B)cos(A-B)

=(cosA cosB + sinA sinB).(cosA cosB - sinA sinB)

= cos²A cos²B - sin²A sin²B

= cos²A(1-sin²B)-(1-cos²A)sin²B

= cos²A-cos²A sin²B - sin²B + cos²A sin²B

= cos²A - sin²B

= (1-sin²A) - (1-cos²B)

=1-sin²A-1 +cos²B

= cos²B - sin²A [ Proved ]

______________________

Some formulas :-

★sin(A+B)=sinA cosB + cosA sinB

★sin(A-B) = sinA cosB - cosA sinB

★cos(A+B)=cosA cosB - sinA sinB

★cos(A-B) =cosA cosB + sinA sinB

____________________

Answered by silentlover45
1

\large\underline\mathrm{Solution}

  \huge \mathfrak{LHS:-}

\implies sin(A+B)sin(A-B) = (sinA cosB - cos A sin B)(sinA cosB - cosA sinB)

\implies sin²A cos²B - cos²A sin²B

\implies sin²A (1 - sin²B) - (1 - sin²A) sin²B

\implies sin²A - sin²B sin²B - sin²B + sin²A sin²B

\implies sin²A - sin²B

\implies (1 - cos²A)(1 - cos²B)

\implies 1 - cos²A - 1 + cos²B

\implies cos²B - cos²A

\huge \mathfrak{proved:-}

  \huge \mathfrak{LHS:-}

\implies cos(A + B)cos(A - B) = (cosA cosB + sinA sinB)(cosA cosB - sinA sinB)

\implies cos²A cos²B - sin²A sin²B

\implies cos²A(1 + sin²B) - (1 - cos ²A)sin²B

\implies cos²A - cos²A sin²B - sin²B + cos²A sin²B

\implies cos²A - sin²B

\implies (1 - sin²A) - (1 - cos²B)

\implies 1 - sin²A - 1 + cos²B

\implies cos²B - sin²A

  \huge \mathfrak{proved:-}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions