Physics, asked by gulshan2552000, 2 months ago

prove that (i) tan 0=v/h and (ii) 12 = ∨2 + h2, where symbols have usual meanings.​

Answers

Answered by pulakmath007
5

SOLUTION

TO PROVE

 \displaystyle \sf{(i) \:  \:  \tan \theta =  \frac{V}{H} }

 \sf{(ii) \:  \:  \:  {I}^{2}  =  {V}^{2} +  {H}^{2}  }

PROOF

Let

I = Total intensity of earth field

θ = The angle of dip

V = Vertical component of I

H = Horizontal component of I

Now resolving I along vertical horizontal direction we get

H = I cos θ

V = I sin θ

Then

 \displaystyle \sf{  \frac{V}{H} }

 \displaystyle \sf{  =  \frac{I  \sin \theta}{ I\cos \theta } }

 \displaystyle \sf{  =  \tan \theta }

 \boxed{ \:  \:  \displaystyle \sf{  \tan \theta =  \frac{V}{H} } \:  \: }

Again

 \sf{  {V}^{2} +  {H}^{2}  }

 \displaystyle \sf{   = {(I  \sin \theta )}^{2}  + { (I\cos \theta ) }^{2}  }

 \displaystyle \sf{   = {I}^{2}{  \sin }^{2}  \theta +  {I}^{2}{  \cos }^{2}  \theta}

 \displaystyle \sf{   = {I}^{2}({  \sin }^{2}  \theta + {  \cos }^{2}  \theta})

 \displaystyle \sf{   = {I}^{2} \times 1}

 \displaystyle \sf{   = {I}^{2} }

 \boxed{ \sf{ \:  \:  \:  {I}^{2}  =  {V}^{2} +  {H}^{2}  } \:  \: }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the speed of sound in air at 50 degree C and 70 dgree C (take speed of sound 332m/s)

https://brainly.in/question/40606714

2. A simple pendulum has period 4 s. The length of the string of the pendulum will be (take g = 10 m/s2 and 1T2 = 10)

https://brainly.in/question/36767516

Similar questions