Math, asked by ukrainian, 3 months ago

Prove that:
(i) \sqrt{\frac{1-\sin A}{1+\sin A}}=\sec A-\tan A
(ii) [tex](1+\tan^{2} A)+(1+\frac{1}{\tan^{2} A})=\frac{1}{\sin^{2}A-\sin^{4}A​

Answers

Answered by StormEyes
2

\sf \Large Solution!!

\sf \large Part\;(i)

\sf L.H.S=\sqrt{\frac{1-\sin A}{1+\sin A}}\times \frac{\sqrt{1-\sin A}}{\sqrt{1-\sin A}}\quad [Multiplying\;and\;dividing\;by\;\sqrt{1-\sin A}]

\sf =\frac{1-\sin A}{\sqrt{1-\sin^{2}A}}=\frac{1-\sin A}{\cos A}\quad [\because 1-\sin^{2}A=\cos^{2}A]

\sf =\frac{1}{\cos A}-\frac{\sin A}{\cos A}=\sec A-\tan A

\sf L.H.S=R.H.S

\sf Hence,\;proved.

\sf \large Part\;(ii)

\sf L.H.S=(1+\tan^{2} A)+(1+\frac{1}{\tan^{2} A})

\sf =\sec^{2}A+(1+\cot^{2}A)

\sf =\sec^{2}A+\cosec^{2}A

\sf \frac{1}{\cos^{2}A}+\frac{1}{\sin^{2}A}=\frac{\sin^{2}A+\cos^{2}A}{\cos^{2}A\sin^{2}A}=\frac{1}{\cos^{2}A\sin^{2}A}

\sf =\frac{1}{(1-\sin^{2}A)\sin^{2}A}=\frac{1}{\sin^{2}A-\sin^{4}A}

\sf L.H.S=R.H.S

\sf Hence,\;proved.

Similar questions