Prove that i107 + ill2 +122 +i153 = 0
Answers
Answered by
4
Step-by-step explanation:
LHS = i^107 + i^ll2 + i^122 + i^153
we know that i = √-1 , i² = -1 , i³ = -i , i^4 = 1
i^107 = i^104 x i³ = (i^4)^26 x i³
= (1)^26 x i³ = 1 x ( -i ) = -i
i^ll2 = (i^4)^28 = (1)^28 = 1
i^122 = i^120 x i² = (i^4)^30 x i²
= (1)^30 x i² = 1 x ( -1 ) = -1
i^153 = i^152 x i = (i^4)^38 x i
= (1)^38 x i = 1 x ( i ) = i
LHS = i^107 + i^ll2 + i^122 + i^153 = -i + 1 + (-1) + i
= -i + 1 + -1 + i = 0 = RHS
Hence proved..
Similar questions