prove that identity in trigonometry
Answers
Answer:
HEY mate here's your answer..
H.S. = \dfrac{cos\theta*cot\theta}{1+sin\theta}
1+sinθ
cosθ∗cotθ
= \dfrac{cos\theta * \dfrac{cos\theta}{sin\theta}*(1-sin\theta)}{(1+sin\theta)*(1-sin\theta)}
(1+sinθ)∗(1−sinθ)
cosθ∗
sinθ
cosθ
∗(1−sinθ)
[ by multiplying both the numerator and denominator by (1 - sinθ) ]
= \dfrac{\dfrac{cos^{2}\theta}{sin\theta}*(1-sin\theta)}{1-sin^{2}\theta}
1−sin
2
θ
sinθ
cos
2
θ
∗(1−sinθ)
= \dfrac{\dfrac{cos^{2}\theta}{sin\theta}*(1-sin\theta)}{cos^{2}\theta}
cos
2
θ
sinθ
cos
2
θ
∗(1−sinθ)
[ since sin^{2}\theta+cos^{2}\theta=1sin
2
θ+cos
2
θ=1 ]
= \dfrac{1-sin\theta}{sin\theta}
sinθ
1−sinθ
[ by cancelling cos^{2}\thetacos
2
θ from both the numerator and the denominator ]
= \dfrac{1}{sin\theta} - \dfrac{sin\theta}{sin\theta}
sinθ
1
−
sinθ
sinθ
(using the formula : \dfrac{a+b}{c} = \dfrac{a}{c} + \dfrac{b}{c})
c
a+b
=
c
a
+
c
b
)
= cosecθ - 1
= R.H.S.
Hence, proved.
Need to prove:
Here we have to prove LHS=RHS.
So let's start!!
Applying formula cot∅=cos∅/sin∅
Now applying identity:
cos²∅=1-sin²∅
Now applying formula in numerator:
• A²-B²=(A+B)(A-B)
Now 1+sin∅ will be cancelled out from both numerator and denominator.
Now taking sin∅ on both numerators.
Now sin∅÷sin∅=1
Apply formula:
• 1/Sin∅=cosec∅
Hence proved LHS=RHS.