prove that if a+b+c=0 then a^3+b^3+c^3=3abc
Answers
Answered by
3
✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶
A+B+C=0
WE HVE TO FIND
a³+b³+c³=3abc
PROOF
WHEN WE FACTORIES
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ac)
PUT THE VALUE OF a+b+c=0
Thn we get
a³+b³+c³-3abc= (0)(a²+b²+c²-ab-bc-ac)
a³+b³+c³=3abc
Hence,proved
✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶
Answered by
0
Answer:
a3 + b3 + c3 = 3 abc
Step-by-step explanation:
a3 +b3 + c3 - 3abc = (a+b+c) (a2 + b2 +c2-ab-bc-ac)
a3 + b3 +c3 -3 abc= 0 * (a2 + b2 + c2 -ab-bc-ca) (a+b+c=0)
a3 + b3 + c3 - 3 abc = 0
therefore, a3+b3+c3 = 3abc
swayam700724:
do you have other theorem
Similar questions