Math, asked by swayam700724, 1 year ago

prove that if a+b+c=0 then a^3+b^3+c^3=3abc​

Answers

Answered by Abhishek474241
3

\huge\star{\mathfrak\color{brown}{HELLO\:MATE}}\star

\color{brown}{HERE\:IS\:YR\:ANS}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\underline\color{Green}{GIVEN}

A+B+C=0

WE HVE TO FIND

++=3abc

PROOF

WHEN WE FACTORIES

++c³-3abc= (a+b+c)(++c²-ab-bc-ac)

PUT THE VALUE OF a+b+c=0

Thn we get

a³+b³+c³-3abc= (0)(a²+b²+c²-ab-bc-ac)

a³+b³+=3abc

Hence,proved

\fbox\color{brown}{HOPE\:IT\:HELPS}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\huge{\mathcal{THANKS}}

 <marquee >☝️ABHI♥️☝️

Answered by rahul638323
0

Answer:

a3 + b3 + c3 = 3 abc

Step-by-step explanation:

a3 +b3 + c3 - 3abc = (a+b+c) (a2 + b2 +c2-ab-bc-ac)

a3 + b3 +c3 -3 abc= 0 * (a2 + b2 + c2 -ab-bc-ca) (a+b+c=0)

a3 + b3 + c3 - 3 abc = 0

therefore, a3+b3+c3 = 3abc


swayam700724: do you have other theorem
rahul638323: it's too much easy broo
rahul638323: easiest method
Similar questions