Math, asked by rohitduggal21, 1 year ago

Prove that if a belongs to cyclic group G , then a(inverse) generates G... that is <a_inverse> = G

Answers

Answered by kvnmurty
1
a ∈ G. Let there be an identity element e in G. 

Then a * e = a    or     a * a⁻¹ = a⁻¹ * a = e,
             where a⁻¹ ∈ A and is called the inverse of a.

For every element a⁻¹ ∈ G,  (a⁻¹)⁻¹ = a ∈ G    since  (a⁻¹) * (a⁻¹)⁻¹ = a⁻¹ * a = e

Thus if  < a > = G , then  < a⁻¹ > = G


kvnmurty: thanx n u r welcom rohit
Similar questions