Math, asked by chaubeynikhil246, 6 months ago

prove that if chords of congruent circles substend equal angles at their centre then the chords are equal

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
21

Answer:

\setlength{\unitlength}{1.2mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(5, - 4){16}}\put(25,30){\circle*{1}}\put(24,32){\sf\large{O}}\put(6,14){\sf\large{A}}\put(25,30){\line(- 5, - 4){16}}\put(10,17){\line(5, 0){30}}\put(42,14){\sf\large{B}}\end{picture}

\setlength{\unitlength}{1.2mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(5, - 4){16}}\put(25,30){\circle*{1}}\put(24,32){\sf\large{O'}}\put(6,14){\sf\large{A'}}\put(25,30){\line(- 5, - 4){16}}\put(10,17){\line(5, 0){30}}\put(42,14){\sf\large{B'}}\end{picture}

  • Two circles are congruent
  • Angle subtended at the center by the two chords are equal
  • The chords are equal?

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • Here let's take two circles of equal radius and two chords AB & A'B'
  • Here we shall prove that the two triangles are congruent hence proving the given statement
  • To prove that in general we shall use those two radius and one angle of the two triangles

In ∆AOB & ∆A'O'B'

\displaystyle\sf :\implies OA = O'A' \:\: \bigg\lgroup Radius \ of \ congruent \ Circles\bigg\rgroup\\\\

\displaystyle\sf :\implies \angle AOB = \angle A'O'B' \:\: \bigg\lgroup Given\bigg\rgroup\\\\

\displaystyle\sf :\implies OB = O'B' \:\: \bigg\lgroup Radius \ of \ congruent \ Circles\bigg\rgroup\\\\

\displaystyle\sf \therefore \triangle AOB \cong \triangle A'O'B' \bigg\lgroup SAS \bigg\rgroup\\\\

\displaystyle\underline{\bigstar\:\textsf{From CPCT :}}

\displaystyle\sf \dashrightarrow AB = A'B'

\displaystyle\underline{\textsf{ \textbf{ Hence Proved!! }}}

Similar questions