Math, asked by anshdeep2003, 11 months ago

Prove that if in a triangle the square of one side is equal to the sum of the squares of the
other two sides, than the angle opposite to the first side is a right angle.
OR

Answers

Answered by shadowsabers03
1

Let there exists a triangle ABC such that,

\mathsf{AC^2=AB^2+BC^2\quad\longrightarrow\quad(1)}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(0,0){\line(1,0){30}}\put(30,0){\line(0,1){40}}\put(0,0){\line(3,4){30}}\put(-4,-4){$A$}\put(30,-4){$B$}\put(31,40){$C$}\end{picture}

But by law of cosines, we have,

\mathsf{AC^2=AB^2+BC^2-2\cdot AB\cdot BC\cdot\cos\angle ABC}\quad\longrightarrow\quad(2)

Then, from (1) and (2),

\mathsf{AB\cdot BC\cdot\cos\angle ABC=0}

Since \mathsf{AB,\ BC\neq0,}

\mathsf{\cos\angle ABC=0}

This implies,

\mathsf{\angle ABC=90^{\circ}}

Hence Proved!

Similar questions