Math, asked by ribhutripathi18116, 4 days ago

Prove that if r ≤ s ≤ n , P ( n , s) is divisible by P ( n , r)

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

We know,

\rm \: P(n,r) = \dfrac{n!}{(n - r)!} \\

can be further rewritten as

\rm \: P(n,r) = \dfrac{n(n - 1)(n - 2) -  -  -  - (n - r + 1)(n - r)!}{(n - r)!} \\

\rm \: P(n,r) = n(n - 1)(n - 2) -  -  -  - (n - r + 1) \\

Now, as it is given that

\rm \: r \leqslant s \leqslant n \\

Let assume that

\rm \: s = r + k \: where \: k \:  \in \: [0, \: s - r] \\

Now, Consider

\rm \: P(n,s) \\

\rm \:  =  \: \dfrac{n!}{(n - s)!}  \\

\rm \:  = \dfrac{n(n - 1)(n - 2) -  -  -  - (n - s + 1)(n - s)!}{(n - s)!} \\

\rm \: = n(n - 1)(n - 2) -  -  -  - (n - s + 1) \\

On substituting the value of s, we get

\rm \: = n(n - 1)(n - 2) -  -  -  - (n - r  -  k + 1) \\

\rm \: = n(n - 1)(n - 2) -  -  -  - [n - (r + k -  1)]\\

can be further rewritten as

\rm \: = n(n - 1)(n - 2)... [n - (r - 1)](n - r)[n - (r + 1)]... [n - (r + k - 1)] \\

\rm \: =  \red{n(n - 1)(n - 2)... [n - (r - 1)] }(n - r)[n - (r + 1)]... [n - (r + k - 1)] \\

\rm \: =  \red{P(n,r) }(n - r)[n - (r + 1)]... [n - (r + k - 1)] \\

\rm\implies \: P(n,s)=  \red{P(n,r) }(n - r)[n - (r + 1)]... [n - (r + k - 1)] \\

\rm\implies \: P(n,s) \: is \: divisible \: by \: P(n,r) \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\rm{  \:C(n,r) =  \frac{n!}{r! \: (n - r)!}  \: }} \\

\boxed{\rm{  \:P(n,r) \:  =  \: r! \: C(n,r) \: }} \\

\boxed{\rm{  \:C(n,x) = C(n,y) \: \rm\implies \:x = y \:  \: or \:  \: n = x + y \: }} \\

\boxed{\rm{  \: \frac{C(n,r)}{C(n,r - 1)}  \:  =  \:  \frac{n - r + 1}{r} \: }} \\

\boxed{\rm{  \:C(n,r) + C(n,r - 1) = C(n + 1,r) \: }} \\

\boxed{\rm{  \:P(n,n) \:  =  \: n! \: }} \\

\boxed{\rm{  \:C(n,n) \:  =  \: C(n,0) \:  =  \: 1 \: }} \\

\boxed{\rm{  \:C(n,n - 1) \:  =  \: C(n,1) \:  =  \: n \: }} \\

Similar questions