Prove that if the diagonals of a parallelogram are equal then it is a rectangle.
Answers
Answer:
here is the proof
Yes if diagonals of a parallelogram are equal then it is a rectangle. Let PQRS be a parallelogram. To show that PQRS is a rectangle, we have to prove that one of its interior angles is 90º. Since PQRS is a parallelogram and one of its interior angles is 90º, PQRS is a rectangle.
Let ABCD be a parallelogram. To show that ABCD is a rectangle, we have to prove that one of its interior angles is 90º.
In ΔABC and ΔDCB,
⇒ AB = DC (Opposite sides of a parallelogram are equal)
⇒ BC = BC (Common)
⇒ AC = DB (Given)
∴ ΔABC ≅ ΔDCB (By SSS Congruence rule)
⇒ ∠ABC = ∠DCB
It is known that the sum of the measures of angles on the same side of transversal is 180º.
⇒ ∠ABC + ∠DCB = 180º (AB || CD)
⇒ ∠ABC + ∠ABC = 180º
⇒ 2∠ABC = 180º
⇒ ∠ABC = 90º
Since ABCD is a parallelogram and one of its interior angles is 90º, ABCD is a rectangle.