prove that if three different resistor are connected in that combination such that the sum of reciprocal of each resistance equal to reciprocal of total resistance of combination
Answers
Answer:
Unlike the previous series resistor circuit, in a parallel resistor network the circuit current can take more than one path as there are multiple paths for the current. Then parallel circuits are classed as current dividers.
Since there are multiple paths for the supply current to flow through, the current may not be the same through all the branches in the parallel network. However, the voltage drop across all of the resistors in a parallel resistive network IS the same. Then, Resistors in Parallel have a Common Voltage across them and this is true for all parallel connected elements.
So we can define a parallel resistive circuit as one where the resistors are connected to the same two points (or nodes) and is identified by the fact that it has more than one current path connected to a common voltage source. Then in our parallel resistor example below the voltage across resistor R1 equals the voltage across resistor R2 which equals the voltage across R3 and which equals the supply voltage. Therefore, for a parallel resistor network this is given as:
parallel resistor voltage
HOPE THIS HELPS YOU
Answer:
So to summarise. When two or more resistors are connected so that both of their terminals are respectively connected to each terminal of the other resistor or resistors, they are said to be connected together in parallel. The voltage across each resistor within a parallel combination is exactly the same but the currents flowing through them are not the same as this is determined by their resistance value and Ohms Law. Then parallel circuits are current dividers.
The equivalent or total resistance, RT of a parallel combination is found through reciprocal addition and the total resistance value will always be less than the smallest individual resistor in the combination. Parallel resistor networks can be interchanged within the same combination without changing the total resistance or total circuit current. Resistors connected together in a parallel circuit will continue to operate even though one resistor may be open-circuited.
Thus far we have seen resistor networks connected in either a series or a parallel combination. In the next tutorial about Resistors, we will look at connecting resistors together in both a series and parallel combination at the same time producing a mixed or combinational resistor circuit.