Math, asked by Anonymous, 11 months ago

Prove that if x = a sin theta+ b cos theta
and
y = a cos theta-b sin theta
, then x2 + y2 = a2+ b2​

Answers

Answered by Anonymous
57

Solution

Given

 \sf \: x = a \sin( \alpha )  + b \cos( \alpha )

 \sf \: y = a \cos( \alpha )  - b \sin( \alpha )

To Prove

 \sf \:  {x}^{2}  +  {y}^{2}  =  {a}^{2}  +  {b}^{2}

LHS

 \sf \: x {}^{2}  +  {y}^{2}  \\  \\  \dashrightarrow \:  \sf \:  \bigg(a \sin( \alpha )  + b \cos( \alpha )  \bigg) {}^{2}  +  \bigg(a \cos( \alpha )  - b \sin( \alpha )  \bigg) {}^{2}  \\  \\  \dashrightarrow \:  \sf \:  \bigg( {a}^{2}  {sin}^{2}  \alpha  +  {b}^{2}  {cos}^{2}  \alpha  + 2ab \: sin( \alpha )cos( \alpha ) \bigg) +  \bigg( {a}^{2}  {cos}^{2}  \alpha  +  {b}^{2}  {sin}^{2}  \alpha  - 2ab \: sin( \alpha ) \: cos( \alpha ) \bigg) \\  \\  \dashrightarrow \sf \: {a}^{2} ( {sin}^{2}  \alpha  + cos {}^{2}  \alpha ) +  {b}^{2} ( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha ) \\  \\  \dashrightarrow \:  \sf \:  {a}^{2}  +  {b}^{2}

Hence,Proved

NoTE

Trigonometric Identities

  • sin²∅ + cos∅ = 1

  • sec²∅ - tan²∅ = 1

  • cosec²∅ - cot²∅ = 1

Algebraic Identities

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²
Answered by ZAYN40
31

Check the attachment.

Attachments:
Similar questions