prove that in a quadrilateral the sum of all exterior angles is 360 degree
Attachments:
Answers
Answered by
5
hey buddy!!
Here is your answer;
➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡➡
⭐⭐⤵
Consider ΔABC in which ∠A = 1, ∠B = 2 and ∠C = 3
Let the exterior angles of A, B and C be ∠a, ∠b and ∠c respectively.
Recall that sum of angles in a triangle is 180°
That is ∠1 + ∠2 + ∠3 = 180°
From the figure, we have
∠1 + ∠a = 180° [Linear pair] ________(1)
∠2 + ∠b = 180° [Linear pair] _______(2)
∠3 + ∠c = 180° [Linear pair] _______(3)
Add the above three equations, we get
∠1 + ∠a + ∠2 + ∠b + ∠3 + ∠c = 180° + 180° + 180°
⇒ (∠1 + ∠2 + ∠3) + ∠a + ∠b + ∠c = 540°
⇒ 180°+ ∠a + ∠b + ∠c = 540°
⇒ ∠a + ∠b + ∠c = 540° – 180° = 360°
Thus sum of exterior angles of a triangle is 360°.
➡hope this helps you deaR ✌✌✌.
Answered by
1
To prove: ∠P + ∠Q + ∠R + ∠S = 360º
Proof:
Consider triangle PQS, we have,
⇒ ∠P + ∠PQS + ∠PSQ = 180º ... (1) [Using Angle sum property of Triangle]
Similarly, in triangle QRS, we have,
⇒ ∠SQR + ∠R + ∠QSR = 180º ... (2) [Using Angle sum property of Triangle]
On adding (1) and (2), we get
∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º
⇒ ∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ = 360º
⇒ ∠P + ∠Q + ∠R + ∠S = 360º [Hence proved]
Proof:
Consider triangle PQS, we have,
⇒ ∠P + ∠PQS + ∠PSQ = 180º ... (1) [Using Angle sum property of Triangle]
Similarly, in triangle QRS, we have,
⇒ ∠SQR + ∠R + ∠QSR = 180º ... (2) [Using Angle sum property of Triangle]
On adding (1) and (2), we get
∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º
⇒ ∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ = 360º
⇒ ∠P + ∠Q + ∠R + ∠S = 360º [Hence proved]
Similar questions