Prove that in a right angled triangle,the square on the hypotenuse is equal to sum of the squares on the other two sides.
Answers
Answered by
2
Answer:
Given :
A right triangle ABC right angled at B.
To prove :
AC² = AB² + BC²
Construction :
Draw BD ⊥ AC
Proof :
In Δ ADB and Δ ABC
∠ A = ∠ A [ Common angle ]
∠ ADB = ∠ ABC [ Both are 90° ]
∴ Δ ADB Similar to Δ ABC [ By AA similarity ]
So , AD / AB = AB / AC [ Sides are proportional ]
= > AB² = AD . AC ... ( i )
Now in Δ BDC and Δ ABC
∠ C = ∠ C [ Common angle ]
∠ BDC = ∠ ABC [ Both are 90° ]
∴ Δ BDC Similar to Δ ABC [ By AA similarity ]
So , CD / BC = BC / AC
= > BC² = CD . AC ... ( ii )
Now adding both equation :
AB² + BC² = CD . AC + AD . AC
AB² + BC² = AC ( CD + AD )
AB² + BC² = AC² .
AC² = AB² + BC² .
Hence proved .
Attachments:
![](https://hi-static.z-dn.net/files/d21/19728689e339d1a16e9b95beb02ef369.jpg)
Answered by
0
Answer:
Check your answer please
Attachments:
![](https://hi-static.z-dn.net/files/d27/3422a1383a21f79339af2782b9396329.jpg)
Similar questions
English,
7 months ago
English,
7 months ago
Accountancy,
1 year ago
Math,
1 year ago
Chemistry,
1 year ago