CBSE BOARD X, asked by 129045, 10 months ago

Prove that in a right triangle, the Square of the hypotenuse is equal to the sum of the square of the other two sides​

Answers

Answered by harpreet2223
3

Figure is in the attachment

Given:

A right angled ∆ABC, right angled at B

To Prove- AC²=AB²+BC²

Construction: draw perpendicular BD onto the side AC .

Proof:

We know that if a perpendicular is drawn from the vertex of a right angle of a right angled triangle to the hypotenuse, than triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

We have

△ADB∼△ABC. (by AA similarity)

Therefore, AD/ AB=AB/AC

(In similar Triangles corresponding sides are proportional)

AB²=AD×AC……..(1)

Also, △BDC∼△ABC

Therefore, CD/BC=BC/AC

(in similar Triangles corresponding sides are proportional)

Or, BC²=CD×AC……..(2)

Adding the equations (1) and (2) we get,

AB²+BC²=AD×AC+CD×AC

AB²+BC²=AC(AD+CD)

( From the figure AD + CD = AC)

AB²+BC²=AC . AC

Therefore, AC²=AB²+BC²

This theroem is known as Pythagoras theroem...

==================================================================================

Hope this will help you.....

Answered by jencydiana2001
1

Answer:

c^2=a^2+b^2

Explanation:

In right angle triangle ,

according to phythagoras theorem

c^2 =a^2+b^2

Similar questions