Math, asked by hnvasita18gmailcom, 1 year ago


Prove that in a right triangle, the square of the hypotenuse is equal to sum of squares of other two
sides. Using the above result, prove that, in rhombus ABCD, 4 AB2= AC2+ BD2​

Answers

Answered by iqram93
0

Answer:

rhombus one is left..... wait for 5 mins

Attachments:
Answered by tranquilcupid22
1

Answer:

Pls Mark as Brainliest!!

Step-by-step explanation:

Given: In ΔABC,  m∠ABC=90°

Construction: BD is a perpendicular on side AC

To Prove: (AC)²=(AB)²+(BC)²

Proof:

In △ABC,

m∠ABC=90°                                                                  (Given)

Since BD is perpendicular to hypotenuse AC              (Construction)

Therefore, △ADB∼△ABC∼△BDC                             (Similarity of right-angled triangle)

△ABC∼△ADB

         (AB/AC)=(AD/AB)                                                (congruent sides of similar triangles)

  AB2=AD×AC                                                          (1)

△BDC∼△ABC

CD/BC=BC/AC                                                        (congruent sides of similar triangles)

BC2=CD×AC                                                            (2)

Adding the equations (1) and (2),

AB2+BC2=AD×AC+CD×AC

AB2+BC2=AC(AD+CD)  

Since, AD + CD = AC

Therefore, AC2=AB2+BC2

Hence Proved.

Given: A rhombus ABCD

To Prove: 4AB2 = AC2 + BD2

Proof: The diagonals of a rhombus bisect each other at right angles.

OA=1/2 AC OB=1/2BD

Angle AOB = 90

In triangle AOB,

AB2= OB2+OA2

AB2= BD/2^2+AC/2^2

AB2= AC2 + BD2

Therefore,

4AB2+ AC2 + BD2

Hence proved...

Similar questions