Math, asked by samikshassingh00, 6 days ago

Prove that in a triangle the line segment joining the
midpoints of any two sides is parallel to the third side

Attachments:

Answers

Answered by mathdude500
30

\large\underline{\sf{Solution-}}

Given :-

A triangle ABC such that D is the midpoint of AB and E is the midpoint of AC.

To Prove :-

DE || BC and DE = 1/2 BC

Construction :-

Through C, draw a line CF || AB, intersecting DE when produced to F.

Proof :-

As it is given that,

D is the midpoint of AB

\rm\implies \:AD = DB \\

E is the midpoint of AC

\rm\implies \:AE = EC \\

Now,

\rm \: In \:  \triangle \:AED \: and \: \triangle \:CEF \\

\rm \: AE = EC \:  \{given \} \\

\rm \: \angle \:1 \:  =  \: \angle \:2 \:  \:  \{vertically \: opposite \: angles \} \\

\rm \: \angle \:3 \:  =  \: \angle \:4 \:  \:  \{alternate \: interior \: angles \} \\

\rm\implies \:\triangle \:AED \:  \cong \:  \triangle \:CEF \:  \:  \{ASA \: congruency \: rule \} \\

\rm\implies \:DE \:  =  \: EF \:  \:  \:  \:  \:  \{CPCT \} \\

and

\rm\implies \:AD \:  =  \: CF \:  \:  \:  \:  \:  \{CPCT \} \\

As, it is given that,

\rm \:  \:AD = DB \\

So,

\rm \:  \:CF = DB -  -  - (1) \\

Also, By Construction, we have CF || AB

\rm \:  \:CF \:  \parallel \:  DB -  - (2) \\

From equation (1) and (2), we concluded that

\rm \:  \:CF = DB \:  \: and \:  \: CF \:  \parallel \: DB \\

We know, In a quadrilateral, if opposite pair of sides are equal and parallel, then quadrilateral is a parallelogram.

\rm\implies \:CFDB \: is \: a \: parallelogram \\

\rm\implies \:\rm \: BC \:  =  \:  FD \:  \: and \: BC \:  \parallel \: FD \\

\rm\implies \:\rm \: DE + EF \:  =  \:  BC \:  \: and \:  \: DE \parallel \:BC  \\

\rm\implies \:\rm \: DE + DE \:  =  \:  BC \:  \: and \:  \: DE \parallel \:BC  \\

\bigg[\rm\because \:DE \:  =  \: EF \:  \:  \:  \:  \:  \{proved \: above \}  \: \bigg]\\

\rm\implies \:\rm \: 2DE \:  =  \:  BC \:  \: and \:  \: DE \parallel \:BC  \\

\rm\implies \:\rm \: DE \:  =  \:  \dfrac{1}{2}   \: BC \:  \: and \:  \: DE \parallel \:BC  \\

Hence, Proved

\rule{190pt}{2pt}

Attachments:
Answered by energypower904
16

solution :

  • please check the attached file
Attachments:
Similar questions