Math, asked by devnaambika, 7 months ago

prove that in any arithmetic sequence ,the sum of the 25th term and the 15th term is twice the 20th term

Answers

Answered by Ataraxia
5

SOLUTION :-

Let,

First term = a

Common difference = d

We have to prove that,

  \sf 25^{th} term + \sf  15^{th} term = 2 × \sf 20^{th} term

We know that,

 \bf a_n=a+(n-1)d

\bullet\sf \ a_{25}=a+(25-1)d \\\\

       =\sf a+24d

\bullet\sf \  a_{15}=a+(15-1)d

       = \sf a+14d

\bullet\sf  \ a_{20}=a+(20-1)d

       = \sf a+19d

\longrightarrow \sf L.H.S = a_{25}+a_{15}

               = \sf (a+24d)+(a+14d}\\\\= 2a+38d

\longrightarrow \sf R.H.S =2\times a_{20}

                = \sf 2\times (a+19d)\\\\=2\times a +2\times 19d \\\\= 2a+38d

\bf\therefore L.H.S = R.H.S

Hence proved.

ADDITIONAL INFORMATION :-

  • The nth term of AP, \bf a_n=a+(n-1)d
  • Sum of n terms of AP, \bf S_n = \dfrac{n}{2}\times (2a+(n-1)d
Answered by Anonymous
3

TO RPOVE:

  • 25th term + 15th term = 2(20th term)

SOLUTION:

Here,

Let the first term be a

common difference be d

now,

we know that,

 \tt{ ✑ a_n=a+(n-1)d}

now,

\tt{ ➟ a_{25}=a+(25-1)d}

\tt{ ➟ a_{25}=a+(24)d}

➟  \tt{a_{25} = a + 24d}

now,

\tt{ ➟ a_{15}=a+(15-1)d}

\tt{ ➟ a_{15}=a+(14)d}

\tt{ ➟ a_{15}=a+14d}

now,

\tt{ ➟ a_{20}=a+(20-1)d}

\tt{ ➟ a_{20}=a+(19)d}

\tt{ ➟ a_{20}=a+19d}

now,

 \tt{  ➨ a_{25} +a_{15}  = 2( a_{20} )}.....(i)

where,

  \tt{ ➤ a_{25} = a + 24d}

\tt{ ➤ a_{15}=a+14d}

\tt{ ➤ a_{20}=a+19d}

substituting these values in eq.(i) we got

 \tt{  ➲ a + 24d +a + 14d  = 2( a + 19d)}

solve this

 \tt{ ➥ 2a + 38d  = 2a + 38d}

here, L.H.S = R.H.S

Hence, proved

Similar questions