Math, asked by chhakchhuakmary077, 3 months ago

prove that in any triangle the line segment joining the midpoints of any two sides is parallel to the third side and is half of it​

Answers

Answered by mathdude500
6

Given :-

Let us consider

A triangle ABC such that

  • D is the midpoint of AB

and

  • E is the midpoint of AC.

To Prove :-

\rm :\longmapsto\:DE = \dfrac{1}{2} BC \: and \: DE \:  \parallel \: BC

Construction :-

  • Through C, draw a line CF parallel to AB, intersects DE at F when produced.

So,

  • CF || DB

Proof :-

Since, it is given that

In triangle ABC

  • D is the midpoint of AB.

  • ⇛ AD = DB

Also,

  • E is the midpoint of AC

  • ⇛ AE = EC

Now,

\rm :\longmapsto\:In \: \triangle \:  EAD  \: and \:  \triangle \: ECF

\rm :\longmapsto\:AE = EC \:  \:  \:  \:  \:  \:  \{ \red{ \bf \: given} \}

\rm :\longmapsto\: \angle \: AED =  \angle \: CEF \:  \:  \:  \:  \:  \{ \red{ \bf \: v.o. \: angles} \}

\rm :\longmapsto\: \angle \: EAD = \angle \: ECF \:  \:  \:  \:  \:  \{ \red{ \bf \: alternate \: angles} \}

\bf\implies \:\triangle  \: EAD  \:  \cong \:  \triangle \: ECF \:  \:  \:  \:  \:  \{ \red{ \bf \: ASA }\}

\rm :\implies\:DE = EF \:  \:  \:  \:  \:  \:  \{CPCT \} -  - (1)

and

\rm :\longmapsto\:AD = FC \:  \:  \:  \:  \{CPCT \}

But,

\rm :\longmapsto\:AD = DB \:  \:  \:  \:  \:  \{given \}

\rm :\implies\:AD = DB= FC

Now,

  • In quadrilateral DBCF,

we have,

\rm :\longmapsto\:DB= FC \:  \:  \: and \:  \:  \:  DB \:  \parallel \:  FC

  • We know, if in a quadrilateral, one pair of opposite sides are parallel and equal, then quadrilateral is a parallelogram.

\rm :\implies\:DBCF \: is \: a \: parallelogram.

\rm :\longmapsto\:  \:  \: \therefore \: DF \: =  \: BC \:  \:  \:  \:  \: and \:  \:  \:  \: DF \:  \parallel \:  BC

\rm :\longmapsto\:  \: \: 2DE \: =  \: BC \:  \:  \:  \:  \: and \:  \:  \:  \: DE \:  \parallel \:  BC

\rm :\implies\:  \: \: DE \: =  \: \dfrac{1}{2}  \: BC \:  \:  \:  \:  \: and \:  \:  \:  \: DE \:  \parallel \:  BC

{\boxed{\boxed{\bf{Hence, Proved}}}}

Note :-

The given statement is called Midpoint Theorem.

Additional Information :-

Its Converse states that

If a line is drawn through the midpoint of one side of a triangle, and parallel to the other side, it bisects the third side

Attachments:
Similar questions