Math, asked by Nikitha2947, 10 months ago

Prove that in any triangleABC P.T
(b2-c2)cotA + (c2-a2)cotB + (a2-b2)cotC = 0

Answers

Answered by lovelysingh55
1

Answer:

2 is power or what.......

Answered by harendrachoubay
1

=(b^2-c^2)\cot A + (c^2-a^2)\cot B + (a^2-b^2)\cot C = 0, proved.

Step-by-step explanation:

By sine rule, we have

\dfrac{a}{\sin A} =\dfrac{b}{\sin B}=\dfrac{c}{\sin C}

\dfrac{\sin A}{a} =\dfrac{\sin B}{b} =\dfrac{\sin C}{c} =k

\sin A=ka, \sin B=kb and \sin C=kc

∴ L.H.S. =(b^2-c^2)\cot A + (c^2-a^2)\cot B + (a^2-b^2)\cot C

=(b^2-c^2)\dfrac{\cos A}{\sin A}  + (c^2-a^2)\dfrac{\cos B}{\sin B} + (a^2-b^2)\dfrac{\cos C}{\sin C}

=\dfrac{b^2-c^2}{ka}.\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2-a^2}{kb}.\dfrac{c^2+a^2-b^2}{ca} + \dfrac{a^2-b^2}{kc}.\dfrac{a^2+b^2-c^2}{2ab}

=\dfrac{1}{2kabc}[(b^2-c^2)(b^2+c^2-a^2)+(c^2-a^2)(c^2+a^2-b^2)+(a^2-b^2)(a^2+b^2-c^2)]

=\dfrac{1}{2kabc}[0]

= 0 = R.H.S., proved,

Similar questions