Math, asked by maharajhossain6543, 1 month ago

Prove that in easitest way,
 \tan(20) \tan(40) \tan(60)  \tan(80) = 3 \\

Answers

Answered by Anonymous
185

\underline{ \underline{\large\green\maltese \large{ \bf \red{Given\: Equation:-}}}}

 \sf\tan(20) \tan(40) \tan(60) \tan(80) = 3 \\

\underline{ \underline{\large\purple\maltese \large{ \bf \orange{To\: Prove:-}}}}

\sf LHS=RHS

\underline{ \underline{\large\blue\maltese \large{ \bf \green{Solution:-}}}}

\underline{\underline{\large \sf Taking\:LHS}}

 \sf\tan(20) \tan(40) \tan(60) \tan(80) =3

 : \implies \tan(60) \tan(20) \tan(40) \tan(80) = 3

: \implies \sf\sqrt{3}. \tan(20) .\tan(60 - 20) \\.\tan(60 + 20)

  : \implies \sqrt{3}. \tan(20) .(\frac{\tan60-\tan20}{1+\tan60.\tan20})

\quad\quad\quad.(\frac{\tan60+\tan20}{1-\tan60.\tan20})

  : \implies\sf \sqrt{3}. \tan(20) .(\frac{ {tan}^{2} 60- {tan}^{2} 20}{1 -  {tan}^{2} 60. {tan}^{2} 20})

  : \implies\sf \sqrt{3}. \tan(20) .(\frac{  { (\sqrt{3}) }^{2} -   {tan }^{2} 20}{1 -  {(\sqrt{3}) }^{2}. {tan}^{2} 20})

  : \implies\sf \sqrt{3}. \tan(20) .(\frac{ 3 -   {tan }^{2}( 20)}{1 -  {3.{tan}^{2} 20}})

  : \implies\sf \sqrt{3}. (\frac{ 3 \tan(20)  -   {tan }^{3} (20)}{1 -  {3.{tan}^{2} 20}})

  : \implies \sf \sqrt{3} . \tan(3.(20))

  : \implies \sf \sqrt{3} . \tan(60)

  : \implies \sf \sqrt{3} . \sqrt{3}

  : \implies \bf\red{3}

 \sf\green{=LHS}

\underline{\underline{\mathfrak\pink{Hence \: Proved}}}

Similar questions