Math, asked by sampatraokadam09, 3 months ago

prove that in right angled triangle, square of hypotenuse is equal to the sum of squares of remaing two sides​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

  • A right-angled triangle ABC right-angled at B.

\begin{gathered}\begin{gathered}\bf \: To\:prove - \begin{cases} &\sf{ \red{{AC}^{2} =  {AB}^{2}+{BC}^{2}}}\end{cases}\end{gathered}\end{gathered}

Construction :-

  • Through B, Draw AD perpendicular to AC intersecting AC at D.

Proof :-

Now,

\purple{\bf :\longmapsto\:In \: \triangle  \: ADB \: and  \: \triangle \: ABC}

\rm :\longmapsto\:\angle \: ADB  =  \angle \: ABC \:  \:  \:  \:  \red{ \{ \sf \: each \: 90 \degree \}}

\rm :\longmapsto\:\angle \: BAD  =  \angle \: BAC \:  \:  \:  \:  \red{ \{ \sf \: common \}}

\purple{\bf :\longmapsto \: \triangle  \: ADB \: \sim\: \triangle \: ABC} \:  \:  \:  \:  \:  \:  \:  \red{\sf\{AA \: similarity \}}

\rm :\implies\:\dfrac{AD}{AB}  = \dfrac{AB}{AC}

\rm :\implies\:\boxed{ \red{ \bf \: {AB}^{2} = AD \times AC}} -  -  - (1)

Now,

\purple{\bf :\longmapsto\:In \: \triangle BDC \:  and \:  \triangle \: ABC}

\rm :\longmapsto\:\angle BDC \:   =  \:  \angle \: ABC \:  \:  \:  \:  \:  \red{ \{ \sf \: each \: 90 \degree \}}

\rm :\longmapsto\:\angle DCB \:   =  \:  \angle \: BCA \:  \:  \:  \:  \:  \red{ \{ \sf \: common \}}

\rm :\longmapsto\:\triangle BDC \:   \sim \:  \triangle \: ABC \:  \:  \:  \:  \:  \:  \:  \:  \red{ \{\sf \: AA \: similarity \}}

\rm :\implies\:\dfrac{DC}{BC}  = \dfrac{BC}{AC}

\rm :\implies\:\boxed{ \red{ \bf \: {BC}^{2} = CD \times AC}} -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:{BC}^{2}+{AB}^{2}  = CD \times AC + AD \times AC

\rm :\longmapsto\:{BC}^{2}+{AB}^{2}=(CD + AD) \times AC

\rm :\longmapsto\:{BC}^{2}+{AB}^{2}=AC \times AC

\bf\implies \:\boxed{ \red{ \bf \:\:{BC}^{2}+{AB}^{2}= {AC}^{2}}}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

1. Pythagoras Theorem :-

  • This theorem states that : In a right-angled triangle, the square of the longest side is equal to sum of the squares of remaining sides.

2. Converse of Pythagoras Theorem :-

  • This theorem states that : If the square of the longest side is equal to sum of the squares of remaining two sides, angle opposite to longest side is right angle.

3. Area Ratio Theorem :-

  • This theorem states that :- The ratio of the area of two similar triangles is equal to the ratio of the squares of corresponding sides.

4. Basic Proportionality Theorem,

  • If a line is drawn parallel to one side of a triangle, intersects the other two lines in distinct points, then the other two sides are divided in the same ratio.

Attachments:
Answered by singhdipanshu2707200
0

Answer:

Check your answer please

Attachments:
Similar questions