Math, asked by sanskritititarmare, 1 year ago

Prove that in rt angle tri the square of hypotenuse is equal to the sum of squares of other two sides

Answers

Answered by yubraj111
2
this can be proved by two methods one is using area of triangles and other using similarity the process by using the Pythagoras Theorem using similarity is given in the photo
Attachments:
Answered by Anonymous
0

Answer:

Given :

A right triangle ABC right angled at B.

To prove :

AC² = AB² + BC²

Construction :

Draw BD ⊥ AC

Proof :

In Δ ADB and Δ ABC

∠ A = ∠ A    [ Common angle ]

∠ ADB = ∠ ABC   [ Both are 90° ]

∴  Δ  ADB  Similar to Δ ABC   [ By AA similarity ]

So , AD / AB = AB / AC   [ Sides are proportional ]

= > AB² = AD . AC  ... ( i )

Now in Δ BDC and Δ ABC

∠ C = ∠ C    [ Common angle ]

∠ BDC = ∠ ABC   [ Both are 90° ]

∴  Δ  BDC Similar to Δ ABC   [ By AA similarity ]

So , CD / BC = BC / AC

= > BC² = CD . AC   ... ( ii )

Now adding both equation :

AB² + BC² = CD . AC +  AD . AC

AB² + BC² = AC ( CD + AD )

AB² + BC² = AC² .

AC² = AB² + BC² .

Hence proved .

Attachments:
Similar questions