Math, asked by Durganandan5432, 5 months ago

Prove that In square root 1-cos x/1+cos x=tan (x/2)

Answers

Answered by farhaanaarif84
0

Answer:

tan

−1

(

1+cosx

1−cosx

1+cosx

+

1−cosx

)

=tan

−1

(

(

1+cosx

)

2

−(

1−cosx

)

2

(

1+cosx

+

1−cosx

)

2

)

=tan

−1

(

1+cosx−1+cosx

1+cosx+1−cosx+2

1−cos

2

x

)

=tan

−1

(

2cosx

2+2

1−sin

2

x

)

=tan

−1

(

cosx

1+sinx

)

=tan

−1

1+tan

2

2

x

1−tan

2

2

x

1+

1+tan

2

2

x

2tan

2

x

=tan

−1

(1−tan

2

x

)

2

(1+tan

2

x

)

(1+tan

2

x

)

2

(1+tan

2

x

)

=tan

−1

1−tan

2

x

1+tan

2

x

=tan

−1

1−tan

4

x

tan

2

x

tan

4

π

+tan

2

x

As π<x<

2

3x

=tan

−1

(tan(

4

π

2

x

))

=

4

π

2

x

Hence, the answer is

4

π

2

x

.

Similar questions