prove that , in the parallelogram the bisector of any two consecutive angles intersect at right angle.
Answers
Answered by
1
Step-by-step explanation:
Let ABCD is a parallelogram
as we know
∠A+∠B=180
0
OAbisects∠DAB&OBbisects∠CBA
toprove∠AOB=90
0
nowinΔAOB
∠OAB+∠CBA+∠AOB=180
0
2
1
∠DAB+
2
1
∠CBA+∠AOB=180
0
2
1
(∠DAB+CBA)+∠AOB=180
0
2
1
×180
0
+∠AOB=180
0
90
0
+∠AOB=180
0
∠AOB=180
0
−90
0
∠AOB=90
0
Answered by
2
Answer:
Let ABCD is a parallelogram
as we know
∠A+∠B=180
0
OAbisects∠DAB&OBbisects∠CBA
toprove∠AOB=90
0
nowinΔAOB
∠OAB+∠CBA+∠AOB=180
0
2
1
∠DAB+
2
1
∠CBA+∠AOB=180
0
2
1
(∠DAB+CBA)+∠AOB=180
0
2
1
×180
0
+∠AOB=180
0
90
0
+∠AOB=180
0
∠AOB=180
0
−90
0
∠AOB=90
0
solution
Step-by-step explanation:
plse mark as brainlist
Similar questions