prove that in triangle ABC
a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc
Answers
Question :- Prove that in ∆ABC, a^3cos(B-C)+b^ 3cos(C-A)+c^3cos(A-B) = 3abc. ?
Solution :-
in ∆ABC, sine rule says that,
- a/sinA = b/sinB = c/sinC = k (let).
- a = ksinA .
- b = ksinB .
- c = ksinC .
Solving first term a³cos(B - C) :-
→ a³cos(B - C)
→ a² * a * cos(B - C)
putting value of a from sine rule,
→ a² * (ksinA) * cos(B - C)
using angle sum property of a ∆, A = 180° - (B + C)
→ a² * k*sin{180° - (B + C)} * cos(B - C)
as sin(180° - x) = sin x ,
→ a² * k * sin(B + C) * cos(B - C)
Multiply and divide by 2,
→ (1/2)a²•k • [2sin(B + C) * cos(B - C)]
→ (1/2)a²•k • [sin2B + cos2C]
→ (1/2)a²•k • [2•sinB•cosB + 2•sinC•cosC]
→ (1/2)a²•k•2•[sinB•cosB + sinC•cosC]
→ a²[k•sinB•cosB + k•sinC•cosC]
again, Putting value from sine rule,
→ a²[b•cosB + c•cosC]
Similarly , we get :-
- b³cos(C - A) = b²[c•cosC + a•cosA]
- c³cos(A - B) = c²[a•cosA + b•cosB]
Putting all values in LHS now, we get,
→ a²[b•cosB + c•cosC] + b²[c•cosC + a•cosA] + c²[a•cosA + b•cosB] = 3abc
→ a²b•cosB + a²c•cosC + b²c•cosC + b²a•cosA + c²a•cosA + c²b•cosB = 3abc
→ (a²b•cosB + b²a•cosA) + (b²c•cosC + c²b•cosB) + (a²c•cosC + c²a•cosA) = 3abc
→ ab(a•cosB + b•cosA) + bc(b•cosC + c•cosB) + ac(a•cosC + c•cosA) = 3abc .
Now, we know that, when we drop a perpendicular from C to angle c . It divides the triangle into two right triangles, and angle c into two pieces .
So,
- c = a•cosB + b•cosA
Similarly now,
- a = b•cosC + c•cosB
- b = a•cosC + c•cosA
therefore,
→ ab•c + bc•a + ac•b = 3abc
→ abc + abc + abc = 3abc
→ 3abc = 3abc (Proved).
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
brainly.in/question/16775946
Answer:
hope it's help full for u