Math, asked by monjyotiboro, 1 month ago

Prove that integration of

sec(y-x) =e^x[sec(y-x)-tan(y-x)]​

Answers

Answered by sye0014
0

Answer:

Step-by-step explanation:

Given: y=tanx+secx

Prove that:  

dx

2

d

2

y

=

(1−sinx)

2

cosx

y=

cosx

sinx

+

cosx

1

=

cosx

1+sinx

differentiate with respect to x

dx

dy

=

dx

d

(

cosx

1+sinx

)

dx

dy

=

cos

2

x

cosx

dx

d

(1+sinx)−(1+sinx)

dx

d

cosx

=

cos

2

x

cos

2

x+sinx+sin

2

x

=

cos

2

x

1+sinx

=

1−sin

2

x

1+sinx

=

(1+sinx)(1−sinx)

1+sinx

=

1−sinx

1

differentiate with respect to x

dx

d

(

dx

dy

)=

dx

d

(

1−sinx

1

)

dx

2

d

2

y

=

(1−sinx)

2

(1−sinx)

dx

d

(1)−(1)

dx

d

(1−sinx)

=

(1−sinx)

2

cosx

Hence proved.

Similar questions